# Oligosaccharide Esters from the Roots of Polygala arillata

Wataru Kobayashi,<sup>†</sup> Toshio Miyase,<sup>\*,†</sup> Sayako Suzuki,<sup>†</sup> Hiroshi Noguchi,<sup>†</sup> and Xin-Min Chen<sup>‡</sup>

School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Shizuoka 422-8526, Japan, and Division of Phytochemistry, Chengdu Institute of Biology, Chinese Academy of Sciences, 4-9 Ren Ming Nan Lu, Chengdu, Sichuan, People's Republic of China

Received February 4, 2000

Two new sucrose esters, arillatoses A (1) and B (2), and four new trisaccharide esters, arillatoses C-F (3-6), were isolated from the roots of *Polygala arillata*, together with four known sucrose esters, glomeratose E (7) and sibiricoses  $A_1$  (8),  $A_5$  (9), and  $A_6$  (10). The structures of the new compounds were elucidated on the basis of chemical and spectroscopic evidence.

In the course of conducting a research program on the oligosaccharide esters from *Polygala* species,<sup>2</sup> we have investigated P. arillata Buch.-Ham. (Polygalaceae). This species is widely distributed in the People's Republic of China, and its roots are used as a traditional medicine in a manner similar to "Yuan zhi" (the roots of P. tenuifolia Willd.) to tranquilize, as a tonic, and to prevent loss of memory.<sup>3</sup> No previous investigation has been reported on the oligosaccharide esters of *P. arillata*. We now report the isolation and structure elucidation of two sucrose esters, arillatoses A (1) and B (2), and four new trisaccharide esters, arillatoses C-F (3-6). Four known compounds isolated from this plant were identified by comparison of the spectral data with reported data as glomeratose  $E(7)^1$ sibiricoses  $A_1$  (8),  $A_5$  (9), and  $A_6$  (10).<sup>2</sup>



# **Results and Discussion**

The air-dried roots of P. arillata were extracted with MeOH under reflux. The MeOH extract was suspended in H<sub>2</sub>O and extracted with ether. The H<sub>2</sub>O layer was adsorbed on a porous polymer gel (Diaion HP-20) column and eluted

with mixtures of water and methanol. The 50% MeOH eluate was chromatographed further to afford six sucrose esters (1, 2, and 7-10) and four trisaccharide esters (3-6).

The FABMS of arillatose A (1) showed quasimolecular ion peaks at m/z 753 [M + H]<sup>+</sup> and 775 [M + Na]<sup>+</sup>, consistent with a molecular formula of  $C_{34}H_{40}O_{19}.$  On alkaline hydrolysis, 1 afforded sucrose, while on acid hydrolysis, it gave D-glucose and D-fructose.<sup>4</sup> The <sup>1</sup>H NMR spectrum of **1** exhibited two methine protons [ $\delta$  4.81 (1H, br s) and  $\delta$  3.98 (1H, d, J = 2 Hz)], a vinyl proton at a highly deshielded position [ $\delta$  7.77 (1H, s)], and two aromatic protons [ $\delta$  6.92 (1H, s) and  $\delta$  6.34 (2H, s)], in addition to the signals due to sucrose. The aromatic proton ( $\delta$  6.34) indicated the presence of a 1,3,4,5-tetrasubstituted benzene unit in 1. All proton and carbon signals were assigned by COSY, HOHAHA, HMBC, and HMQC NMR experiments. On irradiation of the aromatic proton at  $\delta$  6.34 due to H-2', ROEs were observed at a methoxyl at  $\delta$  3.70 (6H, s), a methine proton at  $\delta$  4.81 due to H-1, a methine proton at  $\delta$  3.98 due to H-2, and an olefinic proton at  $\delta$  7.77 due to H-4 (Figure 1). From this ROE correlation between H-2' and H-4, the bond C-1-C-1' was concluded to be quasiaxial. The coupling constant between H-1 and H-2 (4 Hz) indicated that the bond C-2-H-2 was guasi-equatorial, and if the bond C-2–H-2 had been quasi-axial, the H-4 signal would have been a doublet induced by the allylic coupling with H-2.<sup>5</sup> The CD spectrum of **1**, which is identical with (1*S*,2*R*)-1,2-dihydro-6,7-dihydroxy-1-(3',4'-dihydroxyphenyl)naphthalene 2,3-dicarboxylic acid dimethyl ester,<sup>6</sup> showed a positive first Cotton effect at 346 nm. Therefore, 1 has a 1S,2R configuration. From these data, the structure of arillatose A was deduced as cyclic  $3' \rightarrow 3:6 \rightarrow 2 - [(1S, 2R) - 1 - 1]$ (4-hydroxy-3,5-dimethoxyphenyl)-1,2-dihydro-7-hydroxy-6,8-dimethoxy-2,3-naphthalenedicarboxyl]- $\beta$ -D-fructofuranosyl  $\alpha$ -D-glucopyranoside.

Arillatose B (2) was isolated as an amorphous powder. The positive mode FABMS revealed a guasimolecular ion peak at m/z 541 [M + Na]<sup>+</sup>, consistent with a molecular formula of C<sub>22</sub>H<sub>30</sub>O<sub>14</sub>. On alkaline hydrolysis, 2 afforded sucrose and ferulic acid, while on acid hydrolysis, it gave D-glucose and D-fructose. In the <sup>1</sup>H NMR spectrum of 2, one feruloyl signal was observed, in addition to the signals due to sucrose. All proton and carbon signals in the NMR spectra (Tables 2 and 3) of 2 were assigned from its <sup>1</sup>H-<sup>1</sup>H COSY, HOHAHA, HMBC, and HMQC spectra. The position of the feruloyl group in the sucrose moiety of 2 was deduced from the HMBC experiment. In this spectrum, a long-range correlation  $({}^{3}J_{COCH})$  was observed between the feruloyl carbonyl carbon signal at  $\delta$  169.2 and the proton

10.1021/np0000567 CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 07/11/2000

<sup>\*</sup> To whom correspondence should be addressed: Tel.: 054-264-5661. Fax: 054-264-5661. E-mail: miyase@ys7.u-shizuoka-ken.ac.jp. <sup>†</sup> University of Shizuoka.

<sup>&</sup>lt;sup>‡</sup> Chinese Academy of Sciences



Figure 1. Correlations observed in the ROE difference NMR spectrum of arillatose A (1).

Table 1. <sup>1</sup>H NMR and <sup>13</sup>C NMR Data of 1 in CD<sub>3</sub>OD at 35 °C

120

|               |        |                    | 100   |                            |
|---------------|--------|--------------------|-------|----------------------------|
|               |        | <sup>1</sup> H NMR | NMR   | HMBC (C→H)                 |
| sugar moiety  |        |                    |       |                            |
|               | Glc-1  | 5.53 d (4)         | 92.8  | Fru-2                      |
|               | 2      | 3.37 dd (4, 10)    | 73.7  |                            |
|               | 3      | 3.46 dd (10, 9)    | 75.6  | Glc-2                      |
|               | 4      | 3.10 dd (10, 9)    | 72.1  | Glc-3, -5                  |
|               | 5      | 3.70 m             | 73.2  | Glc-6                      |
|               | 6      | 4.06 dd (10, 2)    | 65.7  | α                          |
|               |        | 4.57 dd (10, 9)    |       | Glc-5, α                   |
|               | Fru-1  | 3.66 d (12)        | 66.7  |                            |
|               |        | 3.77 d (12)        |       |                            |
|               | 2      |                    | 105.3 |                            |
|               | 3      | 5.28 d (9)         | 80.3  | Fru-4, α'                  |
|               | 4      | 4.33 dd (10, 9)    | 72.2  | Fru-3, -5, -6              |
|               | 5      | 3.66 <sup>a</sup>  | 81.9  | Fru-2, -3                  |
|               | 6      | 3.76 <sup>a</sup>  | 61.0  |                            |
|               |        | 3.86 <sup>a</sup>  |       |                            |
| lignan moiety |        |                    |       |                            |
|               | 1      | 4.81 br s          | 42.0  | 2, 8, 8a, 9, 1', 2', 3',6' |
|               | 2      | 3.98 d (2)         | 49.6  | 1, 4, 9, 10, 1'            |
|               | 3      |                    | 123.1 |                            |
|               | 4      | 7.77 s             | 141.5 | 2, 3, 4a, 5, 10            |
|               | 4a     |                    | 124.3 |                            |
|               | 5      | 6.92 s             | 109.7 | 4, 4a, 6, 7                |
|               | 6      |                    | 149.5 |                            |
|               | 7      |                    | 143.8 |                            |
|               | 8      |                    | 146.9 |                            |
|               | 8a     |                    | 124.8 |                            |
|               | 9      |                    | 174.7 |                            |
|               | 10     |                    | 168.6 |                            |
|               | 1′     |                    | 135.4 |                            |
|               | 2'     | 6.34 s             | 106.0 | 1, 1', 3', 6'              |
|               | 3′     |                    | 149.1 |                            |
|               | 4'     |                    | 135.6 |                            |
|               | 5'     |                    | 149.1 |                            |
|               | 6'     | 6.34 s             | 106.0 | 1, 1', 2', 5'              |
|               | MeO-6  | 3.91 s             | 56.9  | 6                          |
|               | MeO-8  | 3.53 s             | 60.8  | 8                          |
|               | MeO-3' | 3.70 s             | 56.8  | 3′                         |
|               | MeO-5' | 3.70 s             | 56.8  | 5′                         |

<sup>a</sup> Overlapped.

signal at  $\delta$  4.27 due to H-6 of glucose. From these data, the structure of **2** was elucidated as  $\beta$ -D-fructofuranosyl 6-*O*-feruloyl- $\alpha$ -D-glucopyranoside.

Arillatose C (**3**) was obtained as an amorphous powder. The FABMS of **3** showed a quasimolecular ion peak at m/z 703 [M + Na]<sup>+</sup>. Compound **3** gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis, while on alkaline hydrolysis it afforded ferulic acid. In the <sup>1</sup>H NMR spectrum of **3**, one feruloyl signal was observed. Full assignments of the proton and carbon signals were secured by a HOHAHA difference spectrum, on irradiating at the glucosyl anomeric proton signal and H-3 of the fructosyl moiety, and from <sup>1</sup>H-<sup>1</sup>H COSY, HMQC, and HMBC experiments. In the HMBC spectrum, H-6 of Glc 1 was correlated to an ester carbonyl carbon at  $\delta$  169.1. In a ROE difference spectrum, ROE was observed at  $\delta$  3.92 (1H, dd, J = 9, 9 Hz) due to H-3 of Glc 1 on irradiation at the anomeric proton signal of Glc 2 at  $\delta$  4.53 (1H, d, J = 8 Hz). Accordingly, **3** was deduced as a *O*- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)-6-*O*-feruloyl- $\alpha$ -D-glucopyranosyl  $\beta$ -D-fructofuranoside.

The FABMS of arillatose D (**4**) showed a quasimolecular ion peak at m/z 733 [M + Na]<sup>+</sup>. The <sup>1</sup>H NMR spectrum was similar to that of arillatose C (**3**), but it showed the presence of a sinapoyl residue. Compound **4** gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis, while alkaline hydrolysis gave sinapic acid. The HMBC experiment showed a correlation between H-6 of Glc 1 and an ester carbonyl carbon at  $\delta$  169.0. Thus, **4** was determined as a O- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)-6-O-sinapoyl- $\alpha$ -D-glucopyranosyl  $\beta$ -D-fructofuranoside.

The <sup>1</sup>H NMR spectra of arillatoses E (**5**) and F (**6**) displayed patterns similar to those of arillatoses C (**3**) and D (**4**), respectively, except for downfield-shifted oxymethine protons due to H-3 of a fructosyl moiety at  $\delta$  5.44 (1H, d, J = 7.5 Hz). On alkaline hydrolysis, **5** afforded ferulic acid and **6** afforded sinapic acid. Compounds **5** and **6** gave D-glucose and D-fructose in the ratio 2:1 on acid hydrolysis. In the HMBC spectra of **5** and **6**, H-3 of a fructosyl moiety was correlated to an ester carbonyl carbon. Therefore, **5** was deduced as O- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- $\alpha$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- $\alpha$ -D-glucopy-ranosyl 3'-O-sinapoyl- $\beta$ -D-fructofuranoside and **6** as O- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- $\alpha$ -D-glucopy-ranosyl- $\beta$ -D-fructofuranoside.

## **Experimental Section**

**General Experimental Procedures**. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. UV spectra were recorded on Hitachi U-3410 spectrometer and CD spectra on a JASCO J-20A spectropolarimeter.<sup>1</sup>H (400 MHz) and <sup>13</sup>C (100 MHz) NMR spectra were recorded on a JEOL  $\alpha$ -400 FT-NMR spectrometer with TMS as an internal standard. Inverse-detected heteronuclear correlations were measured using HMQC (optimized for <sup>1</sup>*J*<sub>C-H</sub> = 145 Hz) and HMBC (optimized for <sup>*n*</sup>*J*<sub>C-H</sub> = 8 Hz) pulse sequences with a pulse-field gradient. Positive-mode FABMS were recorded on a JEOL JMS-SX102 spectrometer, using a *m*-nitrobenzyl alcohol matrix. GC was carried out with Hitachi G-3000 gas chromato-graph. HPLC was performed using a JASCO System 800.

**Plant Material**. *P. arillata* Buch.-Ham. was collected in June 1996, in Sichuan, People's Republic of China. The plant was identified by Prof. Zhaoguang Liu, Chengdu Institute of Biology, Academia Sinica, People's Republic of China, and a voucher specimen (no. 960715) has been deposited in the Herbarium, School of Pharmaceutical Sciences, University of Shizuoka.

Extraction and Isolation. The dried and powdered roots of *P. arillata* (1.98 kg) were extracted twice with MeOH under reflux. After evaporation of the solvent under reduced pressure, the MeOH extract was suspended in H<sub>2</sub>O and extracted with diethyl ether. The H<sub>2</sub>O layer was subjected to passage over a porous polymer gel Mitsubishi Diaion HP-20 column  $(15 \times 31.5 \text{ cm})$ . The adsorbed material was eluted with 50% aqueous MeOH, 70% aqueous MeOH, and MeOH, successively, after washing with H<sub>2</sub>O. The 50% aqueous MeOH eluate (11.7 g) was chromatographed on a Si gel (330 g) column using  $CHCl_3$ -MeOH-H<sub>2</sub>O (80:18:2) as an eluent to afford fractions A–R. Fractions H + I (686 mg) were subjected to preparative HPLC [ODS 5 × 100 cm; CH<sub>3</sub>CN-H<sub>2</sub>O (9:91)  $\rightarrow$  (17:83) linear gradient] to afford  $\mathbf{2}$  (6 mg). Fractions J + K (565 mg) were subjected to preparative HPLC [ODS 5 × 100 cm; CH<sub>3</sub>CN- $H_2O$  (9:91)  $\rightarrow$  (17:83) linear gradient] to afford **10** (86 mg). Fraction L (764 mg) was subjected to preparative HPLC [ODS  $5 \times 100$  cm; CH<sub>3</sub>CN-H<sub>2</sub>O (8:92)  $\rightarrow$  (16:84) linear gradient] to afford 1 (15 mg), 7 (31 mg), and 8 (16 mg). Fraction M (807 mg) was subjected to preparative HPLC [ODS 5  $\times$  100 cm;

| Table 2. | <sup>1</sup> H NMR | Data | of 2-6 | in ( | CD <sub>3</sub> OD | at 35 | °C |
|----------|--------------------|------|--------|------|--------------------|-------|----|
|----------|--------------------|------|--------|------|--------------------|-------|----|

|              |        | 2                 | 3                 | 4                 | 5                 | 6                 |
|--------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Sugar moiety |        |                   |                   |                   |                   |                   |
| 0 0          | Glc1-1 | 5.42 d (4)        | 5.47 d (3.5)      | 5.47 d (3.5)      | 5.48 d (4)        | 5.48 d (3.5)      |
|              | 2      | 3.46 dd (10, 4)   | 3.68 dd (9, 3.5)  | 3.68 dd (9, 3.5)  | 3.62 dd (10, 4)   | 3.62 dd (10, 3.5) |
|              | 3      | 3.75 dd (10, 9)   | 3.92 dd (9, 9)    | 3.92 dd (9, 9)    | 3.65 dd (10, 10)  | 3.63 dd (10, 10)  |
|              | 4      | 3.33 dd (9, 9)    | 3.44 dd (9, 10)   | 3.44 dd (9, 10)   | 3.49 dd (10, 10)  | 3.49 dd (10, 10)  |
|              | 5      | 4.11 m            | 4.17 m            | 4.18 m            | 3.94 m            | 3.95 m            |
|              | 6      | 4.27 dd (12.5, 6) | 4.28 dd (12, 6)   | 4.28 dd (12, 6)   | 3.78 dd (12, 6)   | 3.78 dd (12, 6)   |
|              |        | 4.51 dd (12.5, 2) | 4.53 dd (12, 1.5) | 4.53 dd (12, 1.5) | 3.87 dd (12, 1.5) | 3.87 dd (12, 3)   |
|              | Glc2-1 |                   | 4.53 d (8)        | 4.53 d (8)        | 4.28 d (7.5)      | 4.25 d (7)        |
|              | 2      |                   | 3.30 <sup>a</sup> | 3.30 <sup>a</sup> | 3.23 <sup>a</sup> | 3.20 <sup>a</sup> |
|              | 3      |                   | 3.40 dd (9, 9)    | 3.40 dd (9, 9)    | 3.26 <sup>a</sup> | 3.26 <sup>a</sup> |
|              | 4      |                   | 3.30 <sup>a</sup> | 3.30 <sup>a</sup> | $3.27^{a}$        | $3.22^{a}$        |
|              | 5      |                   | 3.34 m            | 3.34 m            | 3.00 m            | 2.92 m            |
|              | 6      |                   | 3.65 dd (12, 6)   | 3.64 dd (12, 6)   | 3.54 dd (12, 6)   | 3.52 dd (12, 6)   |
|              |        |                   | 3.89 <sup>a</sup> | 3.89 <sup>a</sup> | 3.64 <sup>a</sup> | 3.60 <sup>a</sup> |
|              | Fru-1  | 3.60 d (12.5)     | 3.62 d (12)       | 3.61 d (12)       | 3.61 d (12)       | 3.61 d (12)       |
|              |        | 3.60 d (12.5)     | 3.64 d (12)       | 3.63 d (12)       | 3.68 d (12)       | 3.69 d (12)       |
|              | 3      | 4.09 d (8)        | 4.08 d (8)        | 4.08 d (8)        | 5.44 d (7.5)      | 5.44 d (7.5)      |
|              | 4      | 4.06 dd (8, 8)    | 4.08 <sup>a</sup> | 4.08 <sup>a</sup> | 4.38 dd (9, 7.5)  | 4.39 dd (9, 7.5)  |
|              | 5      | 3.80 <sup>a</sup> | 3.80 <sup>a</sup> | 3.80 <sup>a</sup> | 3.96 <sup>a</sup> | 3.97 <sup>a</sup> |
|              | 6      | 3.78 <sup>a</sup> | 3.80 <sup>a</sup> | 3.80 <sup>a</sup> | 3.81 <sup>a</sup> | 3.81 <sup>a</sup> |
|              |        | 3.82 <sup>a</sup> | 3.80 <sup>a</sup> | 3.80 <sup>a</sup> | 3.81 <sup>a</sup> | 3.81 <sup>a</sup> |
| Acid         |        |                   |                   |                   |                   |                   |
|              | β      | 6.42 d (16)       | 6.43 d (16)       | 6.45 d (16)       | 6.44 d (16)       | 6.47 d (16)       |
|              | γ      | 7.63 d (16)       | 7.63 d (16)       | 7.62 d (16)       | 7.72 d (16)       | 7.71 d (16)       |
|              | 2      | 7.22 d (2)        | 7.23 d (2)        | 6.94 s            | 7.24 d (2)        | 6.96 s            |
|              | 5      | 6.81 d (7.5)      | 6.81 d (9)        |                   | 6.84 d (9)        |                   |
|              | 6      | 7.09 dd (7.5, 2)  | 7.09 dd (9, 2)    | 6.94 s            | 7.14 dd (9, 2)    | 6.96 s            |
|              | OMe    | 3.89 s            | 3.89 s            | 3.88 s            | 3.91 s            | 3.90 s            |

<sup>a</sup> Overlapped.

Table 3. <sup>13</sup>C NMR Data of 2-6 in CD<sub>3</sub>OD at 35 °C

|              |         | 2     | 3     | 4     | 5     | 6     |
|--------------|---------|-------|-------|-------|-------|-------|
| sugar moiety |         |       |       |       |       |       |
| 0 5          | Glc1-1  | 93.3  | 93.0  | 92.9  | 93.1  | 93.1  |
|              | 2       | 73.2  | 72.3  | 72.3  | 72.1  | 72.1  |
|              | 3       | 74.7  | 85.4  | 85.4  | 86.9  | 86.8  |
|              | 4       | 71.9  | 70.3  | 70.4  | 69.8  | 69.9  |
|              | 5       | 72.1  | 71.9  | 71.9  | 74.4  | 74.4  |
|              | 6       | 65.1  | 65.0  | 65.2  | 62.4  | 62.4  |
|              | Glc2-1  |       | 105.3 | 105.2 | 105.3 | 105.4 |
|              | 2       |       | 75.5  | 75.5  | 75.5  | 75.5  |
|              | 3       |       | 77.9  | 77.9  | 77.6  | 77.6  |
|              | 4       |       | 71.5  | 71.6  | 71.1  | 71.0  |
|              | 5       |       | 78.2  | 78.2  | 77.9  | 77.8  |
|              | 6       |       | 62.6  | 62.6  | 62.3  | 62.1  |
|              | Fru-1   | 64.3  | 64.4  | 64.5  | 65.5  | 65.5  |
|              | 2       | 105.2 | 105.2 | 105.3 | 105.5 | 105.5 |
|              | 3       | 79.4  | 79.5  | 79.5  | 80.0  | 80.0  |
|              | 4       | 76.2  | 76.2  | 76.2  | 74.2  | 74.2  |
|              | 5       | 83.9  | 84.0  | 84.0  | 84.6  | 84.7  |
|              | 6       | 64.1  | 64.2  | 64.3  | 62.9  | 62.9  |
| acid         |         |       |       |       |       |       |
|              | α       | 169.2 | 169.1 | 169.0 | 168.3 | 168.2 |
|              | $\beta$ | 115.4 | 115.4 | 115.9 | 115.2 | 115.6 |
|              | γ       | 147.0 | 147.0 | 147.2 | 147.7 | 147.9 |
|              | 1       | 127.8 | 127.8 | 126.7 | 127.7 | 126.6 |
|              | 2       | 111.8 | 111.8 | 107.1 | 112.1 | 107.4 |
|              | 3       | 149.4 | 149.4 | 149.5 | 149.5 | 149.5 |
|              | 4       | 150.6 | 150.6 | 139.7 | 150.9 | 139.9 |
|              | 5       | 116.5 | 116.5 | 149.5 | 116.7 | 149.5 |
|              | 6       | 124.2 | 124.2 | 107.1 | 124.5 | 107.4 |
|              | OMe     | 56.6  | 56.6  | 57.0  | 56.6  | 57.1  |

CH<sub>3</sub>CN−H<sub>2</sub>O (8:92) → (16:84) linear gradient] to afford **2** (23 mg), **8** (16 mg), **9** (61 mg), and **10** (18 mg). Fraction N (748 mg) was subjected to a preparative HPLC [ODS 5 × 100 cm; CH<sub>3</sub>CN−H<sub>2</sub>O (8:92) → (16:84) linear gradient] to afford **3** (9 mg), **7** (53 mg), and **9** (15 mg). Fraction O (812 mg) was subjected to a preparative HPLC [ODS 5 × 100 cm; CH<sub>3</sub>CN−H<sub>2</sub>O (8:92) → (16:84) linear gradient] to afford **3** (19 mg), **4** (13 mg), **5** (33 mg), and **6** (23 mg).

**Arillatose A (1)**: amorphous powder,  $[\alpha]^{27}_{D}$  +25.1° (*c* 0.12, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 205 (4.69), 250 (4.34), 340

(4.17) nm; CD (MeOH)  $\lambda_{max}$  ( $\Delta \epsilon$ ) 346 (+7.4), 253 (-6.4), 229 (-12.9) nm; <sup>1</sup>H and <sup>13</sup>C NMR, see Table 1; FABMS *m*/*z* 775 [M + Na]<sup>+</sup>, 753 [M + H]<sup>+</sup>.

**Arillatose B (2)**: amorphous powder,  $[\alpha]^{27}_{D}$  +15.8° (*c* 0.13, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 235 (3.73), 295 (3.66), 326 (3.76) nm; <sup>1</sup>H and <sup>13</sup>C NMR, see Tables 2 and 3; FABMS *m*/*z* 703 [M + Na]<sup>+</sup>.

**Arillatose C (3)**: amorphous powder,  $[α]^{27}_D + 15.8^\circ$  (*c* 0.13, MeOH); UV (MeOH)  $λ_{max}$  (log ε) 245 (3.81), 295 (3.75), 326 (3.83) nm; <sup>1</sup>H and <sup>13</sup>C NMR, see Tables 2 and 3; FABMS *m*/*z* 703 [M + Na]<sup>+</sup>.

**Arillatose D (4)**: amorphous powder,  $[α]^{27}_D + 2.0^\circ$  (*c* 0.10, MeOH); UV (MeOH)  $λ_{max}$  (log ε) 239 (4.21), 330 (4.13) nm;<sup>1</sup>H and <sup>13</sup>C NMR, see Tables 2 and 3; FABMS *m*/*z* 733 [M + Na]<sup>+</sup>.

**Arillatose E (5)**: amorphous powder,  $[\alpha]_{^{27}D}^{20} - 20.6^{\circ}$  (*c* 0.09, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 203 (4.44), 240 (4.05), 294 (3.94), 327 (4.01), 380 (3.35) nm; <sup>1</sup>H and <sup>13</sup>C NMR, see Tables 2 and 3; FABMS *m*/*z* 703 [M + Na]<sup>+</sup>.

**Arillatose F (6)**: amorphous powder,  $[\alpha]^{27}_{D} - 4.5^{\circ}$  (*c* 0.10, MeOH); UV (MeOH)  $\lambda_{max}$  (log  $\epsilon$ ) 202 (4.50), 240 (4.17), 330 (4.12) nm; <sup>1</sup>H and <sup>13</sup>C NMR, see Tables 2 and 3; FABMS *m*/*z* 733 [M + Na]<sup>+</sup>.

Alkaline Hydrolysis of 1–6. Each compound (2 mg) was treated with 1 N NaOH aqueous (50  $\mu$ L) for 4 h at room temperature in N<sub>2</sub> atmosphere, and the reaction mixture was extracted three times with EtOAc after acidification with 1 N HCl. From the H<sub>2</sub>O layer, a sugar was detected by HPLC [Asahipak NH2P-50, 4.6 mm × 25 cm, CH<sub>3</sub>CN-H<sub>2</sub>O (65:35), 1.0 mL/min, UV 195 nm,<sup>7</sup>] as follows: sucrose ( $t_R$  5.2 min) from 1 and 2. From the EtOAc layer, ferulic acid ( $t_R$  9.1 min) was detected from 2, 3, and 5; sinapic acid ( $t_R$  8.6 min) was detected from 4 and 6 by HPLC [YMC R-ODS-5, 4.6 mm × 25 cm, CH<sub>3</sub>CN-H<sub>2</sub>O (22.5:77.5) + 0.05% CF<sub>3</sub>COOH, 1.0 mL/min, UV 270 nm].

Acid Hydrolysis of 1–6. Each compound (1 mg) was heated on a boiling water bath with 1 N HCl (50  $\mu$ L) for 15 min. The reaction mixture was passed through an Amberlite IRA-60E column and the eluate was concentrated. The residue was warmed at 60 °C with a solution of D-cysteine methyl ester in pyridine (3 mg/25  $\mu$ L) for 90 min and to the reaction mixture hexamethyldisilazane (10  $\mu$ L) and trimethylsilyl chloride (10  $\mu$ L) were added, and the reaction mixture was stirred at 60

### Oligosaccharide Esters from Polygala

°C for 30 min. The supernatant was subjected to GC. Conditions: column Supelco SPB-1, 0.25 mm  $\times$  27 m; temperature 220 °C; carrier gas, N<sub>2</sub>. From 1-6, D-glucose ( $t_R$  18.6 min) and D-fructose ( $t_{\rm R}$  14.3 min) were detected.<sup>8</sup> In **3–6**, the ratio of these sugars was 2:1.

Acknowledgment. We thank the staff of the Analytical Center, University of Shizuoka, for measurement of FABMS.

#### **References and Notes**

- Zhang, D.-M.; Miyase, T.; Kuroyanagi, M.; Umehara, K.; Noguchi, H. *Phytochemistry* **1998**, *47*, 45–52, and references therein.
  Miyase, T.; Noguchi, H.; Chen X.-M. J. Nat. Prod. **1999**, *62*, 993– 996.

- (3) Jian, S. New Medicinal College Dictionary of Chinese Drugs, Shanghai (d) Hara, S.; Okabe, H.; Mihashi, K. *Chem. Pharm. Bull.* 1986, *34*, 1843–
- 1845.
- (5) Maeda, S.; Masuda, H.; Tokoroyama, T. Chem. Pharm. Bull. 1995, 43, 84-90.
- (6) Nishizawa, M.; Tuda, M.; Hayashi, K. Phytochemistry 1990, 29, 2645-2649.
- (7) Binder, H. J. Chromatgr. 1980, 189, 414-420.
- (8) The  $t_{\rm R}$  for L-glucose (17.1 min) and the  $t_{\rm R}$  for L-fructose (15.0 min) were obtained from that of the enantiomer (D-fructose + L-cysteine methyl ester).

NP0000567